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A B S T R A C T

Several studies have linked high temperatures to increases in violent conflicts. The findings are controversial,
however, as there has been no systematic cross-sectional analysis performed to demonstrate the generality of the
proposed relationship. Moreover, the timescale of temperature/violence relationships have not been fully in-
vestigated; it is unclear how short versus long-term, or seasonal and inter-annual temperature variability con-
tribute to the likelihood or frequency of violent events. We here perform systematic regional and grid-based
longitudinal analyses in Africa and the Middle East for the period 1990–2017, using geolocated information on
armed conflicts and a recently released satellite-based gridded temperature data set. We find seasonal synchrony
between temperature and number of armed conflicts at the regional scale (climatic region), as well as a positive
relationship in temperature and conflict anomalies on inter-annual timescales at the grid cell level (for the entire
African and ME region). After controlling for ‘location effects’, we do not find that long-term warming has
affected armed conflicts for the last three decades. However, the effects of temperature anomalies are stronger in
warmer places (~5% increase per 10 °C, P < 0.05), suggesting that populations living in warmer places are
more sensitive to temperature deviations. Taken together, these findings imply that projected warming and
increasing temperature variability may enhance violence in these regions, though the mechanisms of the re-
lationships still need to be exposed.

1. Introduction

One of the suggested adversities of global environmental and cli-
mate change is its potential negative effect on human aggression and
violence (Hsiang et al., 2011; Ide, 2015; Ide et al., 2014; Raleigh et al.,
2015). More specifically, it is suggested that warming may exacerbate
or even trigger violence of different forms (Burke et al., 2018; Carleton
and Hsiang, 2016). Aggressive behavior and inter-personal violence in
response to temperature rise are well documented through field and
laboratory studies (Anderson, 1989; Baron and Bell, 1976; Vrij et al.,
1994). However, only in recent years has the availability of high quality
data sets (see e.g. in Levin et al., 2018) and new statistical approaches
(see review in Ide, 2017) allowed for quantitative tests of the link be-
tween temperature and violence at large spatial and temporal scales.
The magnitude of the effect has been shown to depend on many factors,
making the analysis complex and the temperature-violence relationship
less straightforward (O’Loughlin et al., 2014; Schleussner et al., 2016;
Von Uexkull et al., 2016).

Because climate could not be regarded as the sole, or even the

primary factor affecting violent conflicts (Feitelson and Tubi, 2017;
Hsiang et al., 2013), factors other than climate must be considered in
the analysis. For example, different locations may exhibit different le-
vels of conflict due to political, historical, cultural, and other poten-
tially unobserved factors. These ‘location effects’ may mask any pos-
sible effect of temperature on violent conflicts. Moreover, the
unobserved factors may themselves be influenced by temperature, and
thus controlling for these factors in the analysis may underestimate the
effect of temperature on violence (Hsiang et al., 2013).

Hence, to find whether a temperature-violence link exists across
locations, causal effects should be first sought through comparing a
location with itself (Gelman and Hill, 2006). In other words, one should
first track how temperature and violence vary over time relative to local
conditions (Wooldridge, 2010). Only then, after normalizing for ‘loca-
tion effects’, a cross-sectional analysis may be conducted that compares
the relative relationships among the different locations to disclose
systematic causal effects across sites (Hsiang et al., 2013).

Although studies using this technique have shown the existence of a
temperature-conflict link (e.g. Burke et al., 2009; Hsiang and Burke,
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2014), current research suffers from three main caveats. First, despite
the vast literature on climate-violence research, most analyses have
focused on certain limited areas that are known to struggle with vio-
lence, which has led to criticisms of sampling bias (Adams et al., 2018).
Second, few quantitative assessments have addressed the seasonal ef-
fect of temperature on violence, which may be more indicative of a
direct causal effect than inter-annual links, that may involve more
confounding factors. Finally, there is no clear distinction in the litera-
ture between the effect of long-term temperature rise versus different
short-term temperature effects, such as temperature variations (i.e.
anomalies).

Seasonal analysis may expose potential direct effects of temperature
on conflicts because it is not accounting for the long-term effect of
temperature on conflict, which may be confounded by mediating fac-
tors other than climate. On the other hand, seasonal analysis lacks the
long-term effect dimension, which may trigger, for example, human
mobility, enhancing the circumstantial factors that contribute to con-
flicts (van Baalen and Mobjörk, 2017). However, examining tempera-
ture-conflicts links at the long-term alone may miss some important
effects related to inter-annual variability such as severe drought years
or extreme cooling.

Regarding the spatial scale of the analysis, it is also necessary to
establish the proper theoretical foundations for the temperature-con-
flicts relationships. For example, a regional analysis would likely fail to
assess conflict patterns due to local climate variations while, on the
other hand, a fine-scale analysis will most likely miss conflicts that do
not necessarily take place where the impact of climate change is most
severe (Ide, 2017).

We here try to address these drawbacks and the three above-
mentioned caveats by conducting a systematic longitudinal analysis
spanning the entire African and the Middle Eastern (ME) regions for the
period 1990–2017 using two spatial scales and three distinct time scales
analyses. We conduct our analysis on both regional (climatic regions)
and local (pixel-level) scales using coarse-resolution grid cells in a grid-
based analysis to determine whether a temperature-conflict link exists
at spatial scales. We conduct our analyses at both seasonal (monthly)
and inter-annual scales, distinguishing between long-term (trends and
mean) and short-term (annual deviations) temperature effects on the
occurrence of violence (the likelihood of finding violence in a specific
location) and violence aggravation (increases in the number of violent
events), as well as a seasonal synchrony between temperature and
armed conflicts.

2. Data

2.1. Violent conflicts

For information on violent conflicts, we used the most updated
Georeferenced Event Dataset (GED) Global version 18.1 (2017) of the
Uppsala Conflict Data Program (UCDP; Sundberg and Melander, 2013).
The GED.v18.1 is UCDP's most disaggregated data set, covering in-
dividual organized lethal violent events occurring at a given time and
place. We chose non-state conflicts rather than civil war conflicts be-
cause small-scale conflicts are more likely to be sensitive to environ-
mental change (Mach et al., 2019; O’Loughlin et al., 2014). Moreover,
intrastate conflicts are more likely to be caused by climate change be-
cause climatic changes may drive individuals into aggressive behavior
and violence through a plethora of mechanisms (e.g. Baron and Bell,
1976; Cohen and Felson, 1979; Dewall et al., 2011). Non-state conflicts
are defined by UCDP as “the use of armed force between two organized
armed groups, neither of which is the government of a state, which
results in at least 25 battle-related deaths in a year” (Mihai and
Sundberg, 2017).

In the GED data set, each conflict is coded with a unique identifier
(conflict ID), while the start date is recorded as precisely as possible
with the level of precision for day, month and year indicated alongside

(‘Startprec’ variable in GED.v18.1). For our seasonal analysis, we used
conflicts indicated with a ‘Startprec’ level of 1–3 (level 3 means “month
and year are precisely coded”), while a lower level ‘Startprec’ (levels
1–5; level 5 means “year is precisely coded”) was used for inter-annual
analysis.

A single violent event was defined here as a coded event, which is
unique in terms of starting and end dates, and is not a continuation or
part of a previous event. Each event was counted and assigned to a
specific month and year using the reported starting date. Events were
summed per month (for seasonal analysis) and per year (for inter-an-
nual analysis), spanning the period of 1990–2017. Finally, we excluded
Syria from our analysis because of the poor information on violence
provided by GED.v18.1 (see also in Mihai and Sundberg, 2017), parti-
cularly in the last years of the Syrian civil war (2010-date). A grid-based
spatial distribution of all violent events is provided in Fig. S1. The list of
countries involved in the analysis alongside the total number of events
for 1990–2017 per country are provided in Table S1.

2.2. Temperature

We used monthly maximum temperatures from the newly derived
Climate Hazards Center Infrared Temperature with Stations (CHIRTS)
data set (Funk et al., 2019). CHIRTS provides monthly 2-m maximum
air temperatures at a high spatial resolution of 0.05° and a quasi-global
coverage (60°S-70°N) from 1983 to present. Temperature estimates are
derived using a combination of thermal imagery from a constellation of
geostationary satellites, a high-resolution climatology from the Climate
Hazards Center’s Tmax climatology, and in situ monthly 2-m Tmax air
temperature observations obtained from the Berkeley Earth and Global
Telecommunication System (GTS). We used the temperature estimates
from CHIRTS because these were shown to be suitable for monitoring
temperature anomalies and extremes in data-sparse regions like Africa
and the ME (Funk et al., 2019).

2.3. Population density and infant mortality rate

We test two other factors as driving factors of violence occurrence
(see Section 3.2.2. in Methods below), population density and socio-
economic status approximated by infant mortality rate (IMR). The 1 km
WorldPop data set (www.worldpop.org.uk) was used to derive popu-
lation density for Africa and the ME. WorldPop uses an ensemble
learning method for classification, combining 30-m Landsat Enhanced
Thematic Mapper (ETM) satellite imagery for high-resolution mapping
of settlements and gazetteer population numbers to produce gridded
population density maps at high spatial resolutions (Stevens et al.,
2015). A total of five population maps (for years 2000, 2005, 2010,
2015 and 2020) available for Africa and Asia were downloaded from
https://www.worldpop.org/geodata/listing?id=17, merged and
cropped to get single maps for the study area extent. The five maps
were then averaged to a single map layer for average population density
in Africa and the ME for the period 2000–2017.

IMR was used as a proxy for socioeconomic development.
Information on IMR was acquired from the Global Subnational Infant
Mortality Rates, Version 1 (GSIMR.v1) of NASA’s Socioeconomic Data
and Application Center (CIESIN, 2005). The GSIMR.v1 data set is pro-
duced by the Columbia University Center for International Earth Sci-
ence Information Network (CIESIN) and is freely available for down-
load as raster data from https://sedac.ciesin.columbia.edu/data/
collection/povmap. The GSIMR.v1 consists of IMR estimates for the
year 2000 at a spatial resolution of 5 km, which were collected from
vital registration data, surveys and models or estimated using reported
live births and infant deaths data. Although a new version of IMR exists
for the year 2015 (GSIMR.v2), we used the old version with IMR esti-
mates for 2000, which is more representative of the period of our study.
IMR is calculated as the number of infant deaths less than 1 year old
divided by the number of live births and multiplied by 1000. IMR is a
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preferred proxy of poverty and wellbeing over other metrics like Gross
Domestic Product (GDP) or population living on less than one U.S.
dollar per day, because former are difficult to obtain at sub-national
levels. It has also several advantages over other socioeconomic metrics.
For example, it is a highly standardized measure compared to other
measures. It is less likely to be influenced by skewed wealth distribu-
tion. And, information on IMR is available for ~90% or more of the
population in medium and low-income countries. The IMR data set has
been extensively used to study relationships between poverty and
dryland vulnerability (Sietz, 2014; Sietz et al., 2011), poverty and
corruption (Hauenstein et al., 2019), and land degradation and poverty
(Barbier and Hochard, 2018); however, its accuracy may vary de-
pending on the region, with some regions/countries having low-quality
or even no data (Von Uexkull et al., 2016) due to lack of reliable input
data, particularly in some of the rural areas.

2.4. The spatial resolution of analysis

All violent events, temperatures, IMR, and population densities
were binned at a spatial resolution of 0.5° x 0.5° for African and ME
regions. This was done by summing the total number of violent events
and averaging temperatures, IMR, and population densities per grid for
the period of overlap with the violence data (1990 – 2017). A spatial
resolution of 0.5° was used instead of the original finer resolution of the
data sets to overcome inaccuracies in the geolocation of the GED and
IMR data sets, which have reported accuracy, in case of the GED data
set, of up to the level of individual villages. Moreover, climatic, socio-
economic, and demographic factors may affect the population in an
uncentred way, such that the conflict may occur far from the center of
the effect (Ide, 2017; Von Uexkull et al., 2016). Using a coarser spatial
resolution of 0.5° can overcome this issue. Finally, the small data set
(when using the coarser spatial resolution of 0.5°) reduces computa-
tional burden while reducing the propagated error.

3. Methods

3.1. Regional analysis

3.1.1. Inter-annual trends and relationships
We used the Köppen-Geiger classification of climatic zones to dis-

tinguish between ‘cool’ and ‘warm’ areas in Africa and the ME (Fig. S2).
Three zones are found in Africa: the warm equatorial zone A, the warm
arid zone B, and temperate zone C. In the ME, there are also three
zones: the warm arid zone B, the temperate zone C and the cold zone D
in the north.

To quantify the inter-annual changes in temperature and frequency
of violence at the regional level, we used two different methods: A
linear trend using ordinary least squares over the timeseries period, and
the mean value difference between two individual periods, where these
periods were defined as the last and first 10-y periods of the timeseries
(2008–2017 and 1990–1999, respectively). The Student’s t-statistic was
calculated to quantify the probability P of whether the trend is statis-
tically significant and different from zero for the linear trend. We fur-
ther examined whether the trends are not just artifacts of large spikes in
violent events related to one or two known episodes of political vio-
lence. We did that by repeating the trend analysis after excluding these
large spikes.

3.1.2. Seasonal relationships
For seasonal analysis at regional scale, we used a nonparametric

Kruskal‐Wallis test followed by Bonferroni correction to assess whether
the median number of violent conflicts are significantly different among
the months. We also used a simple linear regression between monthly
mean temperature and average number of violent events to assess sig-
nificant synchrony between the two along the season.

3.2. Grid-based analysis

Quantifying climatic effects on human conflict is inherently com-
plex due to the complexity of social systems. Hence, when looking at
relationships between climate and conflicts it is particularly important
to acknowledge whether such statistical relationships can be inter-
preted causally or as links that are confounded by omitted or un-
observed variables. To address this, we use in our study what is known
as a “natural experiment” approach, which is closest as possible to the
conventional scientific experiment approach. In such experimental de-
sign, we compare a given population to itself in time rather than to
other populations. In such way, we are able to control for the many
background factors (e.g. historical, sociological, economic and poli-
tical) that may play important roles in enhancing violence through
climatic changes in a specific population (Hsiang et al., 2013). The
long-term trend in conflicts is then regarded as a gradual change related
to background factors while the intersection is the population specific
basic conditions. Any deviation from such a long-term trend is attrib-
uted to variations in the climatic factor (Fig. S3).

Rainfall may also play an important role in enhancing conflicts,
particularly in dry regions (Feitelson and Tubi, 2017; Tubi and
Feitelson, 2016). However, we here focus on temperature effects be-
cause, unlike rainfall, temperature has been hypothesized and, in some
cases, demonstrated to affect violence through multiple mechanisms. At
the scale of individual behavior, the leading hypotheses for increased
violence under warm conditions are the General Aggression Model,
which holds that higher temperatures directly trigger human aggres-
sion, and the Routine Activity Theory, which focuses on the fact that
higher temperatures cause people to spend more time outdoors and
engage in increased social interaction (e.g. Cohen and Felson, 1979;
Dewall et al., 2011). It is possible that these hypotheses, which address
individual or small group behavior, could scale to the intergroup level.
Other hypotheses focus directly on the scale of organized violence.
These include the Strategic Viability Mechanism, which holds that
warmer temperatures have an ameliorating effect that encourages op-
portunistic violence: greater resource availability, easier travel routes,
and lower risk of disruptive storms can all lead to increased conflict.
This is frequently observed on seasonal timescales, and could hold for
climate change timescales insomuch as the length of warm seasons
increases under global warming (Landis, 2014).

In contrast, a number of studies have investigated the destabilizing
effects of climate shocks, including temperature shocks (e.g. Hendrix
and Salehyan, 2012). Under this line of thought, temperature varia-
bility and, in the context of global warming, increases in heat extremes,
might trigger violence by causing destabilizing scarcities and associated
resource conflicts (e.g. Tol and Wagner, 2010; Zhang et al., 2007),
though it is also noted that very high temperature extremes could in-
hibit violence through physiological or behavioral thresholds on will-
ingness to engage in violent activities (Landis, 2014). Our analysis is
not designed to distinguish between these hypothesized mechanisms,
but results could be valuable for future research addressing the me-
chanisms that may underlie scaling-up of aggressive behavior or group-
level responses to temperature variability.

3.2.1. Inter-annual causal effects
Relationships regarded as causal effects are assessed by first dis-

tinguishing between the three kinds of effects that temperature may
have on the aggravation of violence (increase in number of violent
events over time) at a grid-based level:

1) Local climatologic conditions, defined on the basis of the long-
term mean annual temperature (−Ti):

− =
∑ =T

T
Ni

t
N

t i1 ,

(1)

where Tt i, is the mean annual temperature in year t in grid cell i, and N is
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the total number of years (i.e. 28-y). −Ti may affect the relative long-term
change in violence (ΔViolencei), defined as:

=
d

dt
ΔViolence

(Violence )
Ni

i
(2)

where d
dt

(Violence )i is the slope of trend in frequency of violence (change in
number of violent events per year) in grid cell i. We thus look for some
systematic change in ΔViolencei with −Ti (i.e. ≠−

d
d

(ΔViolence )
(T)

i
i

0) to state that
there is a causal link between the rate of change in violence of a grid
cell and its mean annual temperature. For example, if >−

d
d

(ΔViolence )
(T )

i
i

0
then we can say that there is a greater increase in the rate of armed
conflicts in warmer locations (grids). If this is systematic and sig-
nificant, then we can state that warmer places experience a greater
increase in armed conflicts than cooler places.

2) The long-term change in mean annual temperature of a specific
location (ΔTi) – i.e. warming or cooling trends – may also affect
ΔViolencei, while ΔTi is calculated as:

=
d
dt

ΔT T Ni
i

(3)

where d
dt
Ti is the slope of the linear trend in grid i. In this case, the

relationship between ΔViolencei and ΔTi is explored, while a significant
change in both (i.e. ≠

d
d

(ΔViolence )
(ΔT)

i
i

0) would mean a causal effect of
warming or cooling on the rate of change in violence.

3) Finally, inter-annual variations in temperature, or more precisely
temperature deviations from mean conditions (T ianom, ), may affect vio-
lence through deviations from mean frequency of violence
(Violence ianom, ). In this case, the relationship between timeseries of the
anomalies of temperature and violence are explored as d

d
(ΔViolence )

(ΔT )
i

i
.

The anomalies of both variables are calculated simply by sub-
tracting the original timeseries from a smoothed line fitted to the
timeseries, using the local weighted scatterplot smoothing function
(LOESS; Cleveland, 1979):

= −X X Xi t i t ianom, , , (4)

where Xt i, is the value of variable X (temperature or number of con-
flicts) at time t for grid cell i, derived from LOESS, and Xt i, is the actual
value of X at the same time t. In other words, Xt i, is the expected X value
for year t, considering past and future changes and is calculated simi-
larly to the climatological mean, derived from long-term weather in-
formation. A significantly positive d

d
(ΔViolence )

(ΔT )
i

i
, for example, would in-

dicate that temperature variations (from mean conditions) affect
violence in both directions – namely, positive temperature deviations
increase violence, while negative deviations reduce the frequency of
armed conflicts.

To account for ‘location effects’ and other unobserved factors,
ΔViolence and Violenceanom were both converted into relative amounts
(ΔViolence' and Violence 'anom ) by dividing them by the mean annual
number of armed conflicts of that location. This standardization of the
conflict data allows for a between-site comparison, even though sites
(grids) have different levels of violence. The meaning of that standar-
dization, though, is that a grid with a greater ΔViolence', for example,
does not necessarily have more violence (or even a larger increase or
decrease in the total number of violent events) than a grid with a
smaller ΔViolence'. The same applies to Violence 'anom , which refers only
to the relative deviation from the mean frequency of violence of the
specific location. We use the non-parametric correlation of the
anomalies in temperature and violence (Spearman’s ρ) to assess the
sensitivity of violence to temperature deviations. Not all grids were
used in the analysis because LOESS cannot be applied to a relatively
small number of observations spread over long timeseries periods
(Cleveland, 1979). Thus, only grids with at least 20% of the total years
of data with recorded events were analyzed for temperature anomaly
effects. This resulted in ~40% of the total grids being analyzed. We
then plotted ρ against −T to assess whether the sensitivity of violence to

temperature deviations is affected by local climate (i.e. temperature
conditions). A systematic positive change in ρ with −T (i.e. −

d ρ
d

( )
(T)

i
i

> 0 and
P < 0.05), for example, would indicate that populations living in
warmer places are more sensitive to temperature deviations in terms of
violent behavior than populations living in cooler places.

Finally, we examine non-parametric relationships between
ΔViolence' and ΔT or ΔViolence' and −T because relationships are not
necessarily linear (Anderson, 1989). Changes in these relationships
across sites and temperature conditions for the three-decade period may
indicate local climate (mean temperature) and/or local trends in tem-
perature (warming or cooling) influences on violence. We report only
significant relationships between ΔViolence' and ΔT, and ΔViolence' and
−T at P < 0.05.

3.2.2. Quantifying the risk of violence occurrence
To assess whether temperature may be used as a predictive factor of

the risk of violence occurrence (the likelihood to find violence in a
specific place) in Africa and the ME, we first look at the distribution of
−T in grids where violence was recorded between 1990 and 2017
(hereafter ‘Sample’) and compare this distribution with that in all grids
of the region, including grids where violence was not recorded during
1990–2017 (hereafter ‘Region’). Specifically, we look for two differ-
ences between ‘Sample’ and ‘Region’, in terms of −T:

(I) A systematic shift in the distribution of the ‘Sample’ compared to
that of the ‘Region’, with the ‘Sample’ average significantly dif-
ferent from that of the ‘Region’ at P < 0.05

(II) A higher ratio of ‘Sample’ to ‘Region’ for binned values compared to
the total ratio of ‘Sample’ to ‘Region’ (using the entire range of
values in all grids).

We use two other factors that are known to affect violence in Africa
and the ME in our analysis: average population and IMR, which was
used here as a proxy of socioeconomic development (Williams and
Collins, 1995). Population and socioeconomic development have both
been claimed to affect violence (Hegre and Sambanis, 2006; Von
Uexkull et al., 2016).

We say that if (I) is true, than ‘violent locations’ (locations that
experienced violence in the period 1990–2017) are significantly dif-
ferent from the entire region in terms of the analyzed factor (tem-
perature, population or socioeconomic development approximated by
IMR), which means that it is a significant factor in enhancing the risk of
violence occurrence in the region. This is because the distribution of
values in ‘Sample’ are significantly different from the normal distribu-
tion, derived from the entire population in ‘Region’.

If (II) is true, then the likelihood to encounter violence under spe-
cific conditions (binned values with a greater ratio than total) is greater
than normal, because the distribution of ‘Sample’ to ‘Region’ ratio for
that conditions is greater than the normal distribution of the average
conditions for the entire region.

To check for correlation between population density and IMR in our
analysis, we regressed all grids where information on both factors exist.
We found that the factors are related, with an increase in IMR for denser
populations; however, the correlation was rather weak with the re-
lationship being IMR = 7 Log(Population) + 54, and R2 of 0.05.

Because the information on IMR from GSIMR.v1 may lack the spa-
tial detail needed for the analysis required to assess the difference de-
scribed in (II), we further calculated the ‘Sample’ to ‘Region’ ratio for
groups of grids instead of for the entire range of values. Grids in both
‘Sample’ and ‘Region’ were divided into two groups based on the
median IMR of the total population of grids (IMRmed = 79 deaths per
1000 births), as follows: (1) High-IMR group, representing undeveloped
locations with a low socioeconomic status and (2) low-IMR group, re-
presenting developed locations with a high socioeconomic status.
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4. Results

4.1. Regional trends in temperature and violence in Africa and the Middle
East

The entire African and ME region faced significant warming in the
last three decades (Fig. 1A). In particular, temperature increased up to
1 °C per decade in the cooler areas of the region (Fig. S4). Similarly, the
frequency of armed conflicts increased by 52±68 events per year
(2.7±3.5% of mean, P = 0.0003) or by 80 violent events per year when
comparing the average number of events for 2008–2017 to that of
1990–1999. Increase in violence was even more severe in current
decade, with a trend of 265,774± events per year (R = 0.84;
P= 0.0096; 2010–2017), which is ~14% of the mean number of events
per year for the entire 1990–2017 period. The increase in violence
occurred in both Africa and ME regions (Fig. 1B), with a significant
increase in Africa since 2005 (9.6% of mean, R = 0.93; P < 0.0001)
and episodic but consistent increase in the ME since 1990 (4.0% of
mean, R = 0.61; P = 0.0006; 1990–2017).

Unlike the evident regional warming, trends in violence differed
among climatic zones (Fig. 2). ‘Cooler’ regions became in general less
violent while violence increased substantially in ‘warm’ zones. For ex-
ample, the number of violent events increased significantly in Africa’s
arid region (zone B in Köppen-Geiger classification) by 41 ± 40 events
per year (8.2 ± 8.0% of mean, P < 0.0001) or by 71 events per year
(14.2%) between 2008 and 2017 and 1990–1999 (Fig. 2A). Increase
was also significant in ME’s arid region with an average of 31 ± 32
events per year (9.2 ± 9.8%, P < 0.0001) or 53 events per year
(15.7%) between 2008 and 2017 and 1990–1999 (Fig. 2B).

In contrast, the frequency of violence decreased significantly in
Africa’s temperate region (zone C) by 19 ± 20 events per year
(7.0 ± 7.4%, P < 0.0001) or by 33 events per year (12.2%) between
2008 and 2017 and 1990–1999 (Fig. 2D); as well as in the ME’s cold
zone D by 3 ± 6 events per year (4.7 ± 9.4%, P = 0.015) or by 8
events per year (12.5%; Fig. 2F). The negative trend was marginally
significant (P = 0.063; 1996–2017) in ME’s cold region D even after
excluding the large peak in violence at the beginning of the first decade
(1990–1996; Fig. S5A), which was mostly related to a new Turkish
counter-insurgency against the PKK (Jacoby, 2010). Similarly, a de-
crease of 9 events per year in Africa’s temperate regions was still

significant (P = 0.0004; 1995–2017; Fig. S5B) after excluding the large
number of violent events in 1990–1994, which was related to the Natal
civil war in the KwaZulu-Natal coastal province at the end of the
apartheid (Kaufman, 2017). In these regions, temperature and violence
were significantly correlated (Fig. 2A, B, D and F).

4.2. Seasonal synchrony between temperature and violence in climatic
regions

At the seasonal scale, we find synchrony between temperature and
violence in most climatic zones, where violence occurs mostly in
warmer months.

Fig. 3 shows the seasonal relationships between monthly number of
violent events and mean temperature, with the probability P of the
linear regression alongside, indicating the significance of the relation-
ship. Significant correlations between frequency of violence and tem-
perature in most of these zones indicate a seasonal link between the
two. Fig. 4 further shows that this relationship was generally stronger in
cooler regions (Fig. 4B) which have a larger seasonal temperature cycle
(Fig. 4A).

Significant differences in violence among months were noted in the
cold region of the ME (zone D), and, interestingly, in equatorial Africa
(zone A), where more violence occurred in the warmer months (blue
and red bands at the bottom of the boxplots in Fig. 3). Moreover, in-
crease in the frequency of violence was four times larger in summer
(June-August) compared to winter months (Nov-Feb; +22 vs. + 5
events per month per year, P < 0.05 in a full factorial ANCOVA test for
the interaction year × season) during 2008–2015 in the ME (over-
lapping years of the ‘Arab Spring’ period; Levin et al., 2018), suggesting
a positive seasonal effect of warm temperatures on violence at the re-
gional scale.

4.3. Temperature anomalies have greater effect on violence in warmer
places

Results from the grid-based inter-annual analysis indicate that the
range in ΔViolence' was between –20% and 22% across Africa and the
ME (Fig. 5A). Also, most of the ρ’s from the non-parametric correlations
between Violence 'anom and Tanom were positive (Fig. S6), of which 47%
were also statistically significant at P < 0.05 and 52% at P < 0.1.

Fig. 1. Increases in temperature and violence in Africa and the Middle East in the last three decades. (A) Map of decadal changes in temperature by 0.5° grids
(δT; 1990–2016), with plus symbols indicating grids with statistically significant linear trends (P < 0.05). (B) Yearly number of inter-group armed conflicts for the
Middle East (green), Africa (purple) and both regions together (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Positive ρ’s imply that violence generally increased in warm years and
decreased in cool years with a relative magnitude of change propor-
tional to the ranked temperature anomaly. The magnitude of ρ was
independent of the trend in violence, with an average ρ of +0.40
and +0.42 for negative and positive ΔViolence' (trends in violence),
respectively (P = 0.36 in a paired t-test; comparable blue and red
symbol sizes in Fig. 5A).

ΔViolence' was indifferent to the long-term change in temperature
(slope ~ 0; Fig. 5B), meaning that changes in violence were not affected
by warming or cooling trends in the analysis period. However,
ΔViolence' increased with −T by an average of ~ 1% per 1 °C
(P < 0.0001; Fig. 5C), indicating a greater increase in violence for
warmer locations.

The correlation between temperature and violence anomalies (ρ)
increase with −T (P = 0.0062; Fig. 5D), indicating higher violence
sensitivity to temperature anomaly in warmer places. ρ increased by
0.49% per 1 °C, suggesting that the Tanom–Violence 'anom link becomes
stronger for warmer locations.

4.4. Population and socioeconomic development affect violence occurrence,
but no apparent effect of temperature

Results of the violence occurrence analysis (factors affecting the
likelihood to find violence in a specific place) show that the mean po-
pulation density and the average IMR (proxy of socioeconomic status)
of the ‘Sample’ (grids with violence) are both higher than those of
'Region' (total grids in the two regions), with a mean population density
of 72,000 persons per grid and an average IMR of 98 deaths per 1000
births for ‘Sample’ compared to 17,500 persons per grid and 82 deaths
per 1000 births for ‘Region’ (P < 0.0001 in a paired t-test, for both;
Fig. 6, A and B). Nearly 61% of the grids in ‘Sample’ were classified as

high-IMR, meaning that ‘Sample’ was statistically different than ‘Re-
gion’ and high-IMR was more common in ‘Sample’ than low-IMR. The
average −T for ‘Sample’, on the other hand, was quite similar to that of
‘Region’, with a slightly lower 30.0 °C compared to −T = 30.3 °C of the
‘Region’ (Fig. 6C), suggesting no direct influence of temperature on
whether or not a grid cell experienced violence during the period of
analysis.

‘Sample’ to ‘Region’ ratios increased linearly with the log population
density (Sample/Region[%] = 14.4 Log(Pop) – 39.6; R2 = 0.95) and
logarithmically with IMR (Sample/Region[%] = 9.7 Ln(IMR);
R2 = 0.44; ratios shown as red histograms in Fig. 6, A and B), reflecting
the positive skew of the ‘Sample’. For both factors the ratio was larger
than the total ratio (horizontal dashed line in Fig. 6A,B) for larger va-
lues. When classified by groups, the ‘Sample’ to ‘Region’ ratio was
29.2 ± 18.6% for high-IMR compared to 18.7 ± 11.2% of the low-
IMR group (P < 0.05 from a paired t-test). In contrast to population
density and IMR, the ‘Sample’ to ‘Region’ −T ratio was within or lower
than the total ratio, with little change across the entire range of values
(Sample/Region[%] = –0.14 −T + 27.2; R2 = 0.05; Fig. 6C).

5. Discussion and conclusions

Our work complements and adds to previous studies by: (1) pro-
viding a first grid-based quantitative analysis of the temperature-con-
flicts link in the ME; (2) providing a first regional-based analysis that
considers climatic regions; (3) describing seasonal relationship patterns
of temperature and violence; and (4) distinguishing between short and
long-term effects of temperature on violent conflicts. These aspects
were previously not, or only partly, considered by others. Findings from
this study were aimed to shed light upon temperature–conflicts links at
different spatial and temporal scales.

Fig. 2. Regional inter-annual variations in mean temperature and violence. Standardized regional mean temperature anomaly (red) and armed conflicts (black)
for Köppen-Geiger climatic zones in Africa and the Middle East. ‘Warm’ regions are in the top row and ‘cooler’ regions are at the bottom. The region is indicated by
the map in each graph (A and B for arid B-zones; C for equatorial Africa’s A-zone; D and E for temperate zones, and F for ME’s boreal zone D). The linear trend (±one
standard deviation) per year and its significance level P for temperature (°C change per year) and violence (change per year in number of events) are indicated,
followed by the mean value difference between the last and first 10-year periods (in bold). The correlation coefficient R and its P value between violence and
temperature are indicated at the top of the graphs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Our results indicate that when taking all factors into account (i.e.
not considering ‘location effects’) violent places do not differ from other
parts of Africa and the ME in terms of local temperature. A rather weak
influence of mean temperature on violence occurrence compared to
other factors, such as population density and socioeconomic status, may
be the reason for that (O’Loughlin et al., 2014; Von Uexkull et al.,
2016). Yet, when analyzing only violent places (i.e. considering ‘loca-
tion effects’) the influence of temperature variations on the frequency of

inter-group violence was evident, particularly in warm locations. In-
terestingly, though, we did not find a direct evidence that warming
affects the frequency of conflicts during the period of analysis
(1990–2017), in contrast to previous reports. Burke et al. (2009)
showed that an increase of 1 °C increases the frequency of conflicts by
4.5% at a country-level in Africa in the same year. By comparing
quantitative results across numerous studies, Hsiang et al. (2013)
reached a conclusion that warmer conditions generate more conflicts

Fig. 3. Seasonal synchrony between temperature and violent conflicts. (Upper) Boxplots showing median, 1st and 3rd quartiles of monthly number of events
and temperature for Köppen-Geiger climatic zones in Africa and the Middle East. Zones indicated by the map in each graph are the same as in Fig. 2. (Bottom)
Scatterplots of the correlations between mean monthly number of violent events and temperature for the same zones as above. The correlation, R, and its P-value are
indicated. Horizontal dashed lines in boxplots indicate the mean number of violent events per month (black) and mean temperature (red). Blue and red bands at the
bottom of the boxplots indicate months with statistically significant low and high number of events, respectively, from a nonparametric Kruskal‐Wallis test followed
by Bonferroni correction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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with an increase of ~13% in inter-group violence per 1σ rise in tem-
perature. Here, we could not directly confirm the effect of long-term
warming, but rather showed its effect indirectly. This does not ne-
cessarily mean that the long-term temperature trend has no effect on
violence, but rather emphasizes the difficulty of controlling for factors
other than temperature when looking for long-term relationships at
inter-annual timescales.

While we are aware of the fact that the GED battle-related deaths
data set miss small-scale violent events, which are believed to be the
most affected by climate, this is currently the most accurate global data
set available on violent conflicts. Moreover, the exact and consistent
definition of a violent conflict event in the GED data enables us to
analyze this phenomenon across time and space, providing a global
picture of organized lethal violence. Thus, we believe that in spite of the
fact that temperature might affect small-scale violence (violent events
without deaths), as previously shown by others (Tubi and Feitelson,
2016), in our study it does not clearly show a direct impact on long-

term trends in these moderately sized armed conflicts.
The potential for a long-term effect, though, is evident indirectly

when considering ‘location effects’ in the analysis. The effect of tem-
perature variations on conflicts was found to be stronger in warmer
locations, being 10% stronger in places with a mean annual maximum
temperature of 40 °C compared to places with a mean annual maximum
temperature of 20 °C (i.e. an equivalent effect of 5% increase in the
strength of the temperature-conflicts link per each 10 °C of warming).

Increase in population density and decrease in socioeconomic status
(higher IMR) are both associated with enhanced likelihood of violence
occurrence. In regions where the vast majority of the population is rural
and more dependent on natural resources (such as much of sub-Saharan
Africa) the likelihood of conflict can be hypothesized to be greater,
particularly if water scarcity is taken into account. This means that we
should expect more violence in rural, rather than in urban areas, at least
in sub-Saharan Africa. However, as many previous studies have shown,
larger populations may increase conflict risk through a larger pool of

Fig. 4. Cooler regions with a wider range in
temperature from winter to summer have the
stronger violence – temperature seasonal syn-
chrony. Relationships between (A) the monthly
violence – temperature correlation (indicated on
plots in Fig. 2) and the seasonal temperature range
(mean temperature of hottest month minus that of
coldest month); and between (B) the range in vio-
lence (number of events in month with maximum
violence minus that in month with the minimum
violence) and mean annual temperature, for the 6
regions in Fig. 2. Correlations shown are with all
regions (black) and excluding the negative correla-
tion in Africa’s zone C (gray) in (A), and ME’s zone B
in (B). Symbol colors from blue to red indicate in-
creasing (A) regional mean annual temperature and
(B) seasonal temperature range. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Stronger effect of temperature anomaly on violence in warmer areas. (A) Map of the relative change in violence (ΔViolence'; 1990–2017), mean annual
temperature (−T) and the correlation between the anomalies of temperature (Tanom) and violence (Violence 'anom ), indicated by the size of the symbol. Nonparametric
regressions of (B) ΔViolence' against long-term temperature change (△T), with summed binned values of −T at the bottom; (C) ΔViolence' and −T, with summed binned
values of the Spearman’s rank of the correlation (ρ) between timeseries of temperature and violence; and (D) Violence 'anom –Tanom non-parametric correlations (%)
against −T, with summed binned values of△T. Histograms show the distribution of the independent variables. Confidence curves are 95% for the fitted line. Note that
coolest places (blue hue in horizontal band in B) experienced the largest △T (~2°C). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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people willing to engage in violence under unfavorable conditions
(Goldstone, 2002; Raleigh and Hegre, 2009). Or, violence may be more
easily triggered by climate change in areas where a high population
density places an extra pressure on the already scarce available re-
sources (Urdal, 2005). This is particularly true following climate-re-
lated disasters (Ide et al., 2020).

Likewise, populations of low socioeconomic status are often more
likely to be involved in violence (Hegre and Sambanis, 2006; Hsiang
et al., 2011), particularly when stress on resources is high (Von Uexkull
et al., 2016). Population density and IMR may be related. We find in our
study a significant but rather weak correlation between the two,
meaning that population density and IMR are likely to have, at least to
some extent, independent influences on armed conflicts.

Our seasonal analysis reveals that changes in the frequency of vio-
lence are coupled with seasonal variations in temperature across cli-
matic zones in Africa and the ME. This is an important result, because
unlike the inter-annual relationship that may involve unobserved in-
direct effects (e.g. warming on resources and resources on violence;
Carleton, 2017; von Uexkull et al., 2016), seasonal relationships imply a
more direct effect. Viewed from the perspective of individual beha-
vioral tendencies, this relationship could be caused by stressful condi-
tions during warm summers due to temperature rise, which may en-
hance aggressive behavior (General Aggression Model - GAM; Dewall
et al., 2011). Indeed, aggressive behavior was found to be augmented
following temperature rise in both laboratory and field experiments
(Anderson, 1989; Baron and Bell, 1976; Vrij et al., 1994). Exposure to
warming and even to words related to hot temperatures has shown to
increase aggressive thoughts and hostile perceptions (DeWall and
Bushman, 2009), while these may be translated to physical violence. On
the other hand, increase in violent conflicts during warm periods may
also result from the simple fact that more people are outdoor inter-
acting with each other when the weather is warm (Routine Activity
Theory - RAT; Cohen and Felson, 1979). The hot season also coincides

with the dry season, which may further support the RAT in this case
because people are less busy in agriculture during the dry season, or are
more able to travel. Viewed at the level of organized groups, our results
are also consistent with the Strategic Viability Mechanism (Landis,
2014), in that the warm season is often associated with greater access to
resources and lower inhibition on travel, both of which may increase
opportunities for violent groups to act. Insomuch as violence emerges
spontaneously out of individual conflicts, theories like GAM or RAT
might apply. But insomuch as violence at the scale considered in this
study requires some form of organization or planning, theories like the
Strategic Viability Mechanism might be more relevant. Thus, the exact
mechanisms by which temperature rise affect violent conflicts at the
seasonal scale still need to be determined. Future research could ad-
dress the behavioral mechanisms that underlie this scaling-up of ag-
gressive behavior, from interpersonal aggression to violence between
groups.

Overall, our findings highlight the relative influence that tempera-
ture anomalies may have on violent conflicts, particularly in warm lo-
cations. Although we did not find a direct effect of the 27-year trends in
temperatures on violence, the higher sensitivity of violence to tem-
perature anomalies in warmer places suggest potential adverse effects
of long-term warming on violence. These findings support previous
studies that have identified a positive temperature-violent conflicts
relationship (Burke et al., 2009; Hsiang et al., 2013) and expand those
to the ME region where few quantitative studies exist (Adams et al.,
2018). Moreover, our analysis was not confined to specific areas, but
spanned the entire African and ME regions, thus emphasizing the
generality of the findings. This is important, as previous studies have
been criticized as being products of a “streetlight effect,” or sampling on
the dependent variable, because they have focused on specific violence-
prone regions (Adams et al., 2018). Finally, the link found here at the
seasonal timescale points out a direct effect of temperature on conflicts,
in accordance to inter-personal GAM and RAT theories.

Fig. 6. High population density and low socio-
economic status increase the risk of conflicts in
Africa and the Middle East, but no apparent ef-
fect of local temperature. Distributions of grids
where armed conflicts occurred during 1990–2017
(‘Sample’) and of all grids in the region (‘Region’)
for (A) log population density per grid, (B) infant
mortality rate (IMR; number of deaths per 1000
births), used a as proxy for socioeconomic status,
and (C) long-term mean temperature (−T; °C). A skew
in ‘Sample’ relative to ‘Region’ means statistically
different conditions in violent grids than in the total
grids of the region. Vertical dashed lines indicate
the averages of ‘Region’ (gray) and ‘Sample’ (black).
Red histograms show significant ‘Sample’ to
‘Region’ ratios (P < 0.05) for binned values. A
ratio above the horizontal line (Sample/Region in-
cluding all grids) means deviation from normal
distribution and a greater probability of violence
occurrence. Trend in ratios (Y, quantified as the
percentage of Sample/Region) is indicated above
with respective R2. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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Nevertheless, the influence of climate on violence is inherently
complex, and our study is limited by certain simplifying assumptions.
These include the fact that we have not considered a location’s history
of violence in a time-varying sense; it is possible that a conflict in one
year alters the potential for another conflict for some period of time into
the future. Additionally, we have attempted to control for location ef-
fects by adopting a longitudinal analysis approach. However, it is
possible that conditions related to governance, ethnic interactions, and
other conflict-relevant factors might change through time, or that these
conditions might act as effect modifiers.

Considering our findings and increasing warming projected for
these regions (Lelieveld et al., 2016), future increases in the frequency
of violence may be expected. Yet, there is a need to understand the
mechanisms by which temperature actually affect the occurrence and
frequency of violence. This is key to improve our readability for future
violent conflicts outbreaks and response to violence aggravation in
violence-prone locations.
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