kaye | האוניברסיטה העברית בירושלים | The Hebrew University of Jerusalem
Skip to Hebrew
Skip to English
Skip to Arabic
Skip to Site Map

kaye

English

New research could lead to earlier diagnosis of Parkinson’s disease

05/07/2017

Suaad Abd-Elhadi wins Kaye Innovation Award for her work on a new diagnostic approach that could pave the way for early diagnosis of one of the most common and debilitating neurodegenerative disorders

Parkinson’s disease is the second most common neurodegenerative disorder in humans, after Alzheimer’s disease. It is typically characterized by changes in motor control such as tremors and shaking, but can also include non-motor symptoms, from the cognitive to the behavioral. An estimated seven to 10 million people worldwide are living with Parkinson's disease, with medication costing approximately $2,500 a year, and therapeutic surgery costing up to $100,000 dollars, per patient.

Making an accurate diagnosis of Parkinson’s, particularly in early stages and mild cases, is difficult, and there are currently no standard diagnostic tests other than clinical information provided by the patient and the findings of a neurological exam. One of the best hopes for improving diagnosis is to develop a reliable test for identifying changes in the severity of the disease. This will allow drug companies to test potential drugs at higher efficacy.

Now, a novel diagnostic approach developed at the Hebrew University of Jerusalem’s Faculty of Medicine could pave the way toward such a test. Working under the supervision of Dr. Ronit Sharon, at the Institute for Medical Research Israel-Canada (IMRIC), PhD student Suaad Abd-Elhadi developed the lipid ELISA, an approach that could lead to earlier detection of Parkinson’s, along with better tracking of the disease’s progression and a patient’s response to therapy.  

How the ELISA works

ELISA stands for “enzyme-linked immunosorbent assay.” An assay is a procedure used in laboratory settings to assess the presence, amount and activity of a target entity, such as a drug, cell or biochemical substance. ELISA is a common assay technique that involves targeting cellular secretions.

In the case of the lipid ELISA, the cellular secretion of interest is a specific protein called the alpha-Synuclin protein. This protein serves as a convenient biomarker that is closely associated with the tissues where Parkinson’s disease can be detected, along with the neurological pathways the disease travels along, causing its characteristic symptoms.

The development of a simple and highly sensitive diagnostic tool that can detect Parkinson’s biomarkers could lead to a minimally invasive and cost-effective way to improve the lives of Parkinson’s patients. Toward this end, Abd-Elhadi has recently demonstrated a proof of concept to the high potential of the lipid-ELISA assay in differentiating healthy and Parkinson’s affected subjects. She is now in the process of analyzing a large cohort of samples, including moderate and severe Parkinson's, and control cases, as part of a clinical study.

The Hebrew University, which holds granted patents on the technology through its technology transfer company Yissum, has signed an agreement with Integra Holdings for further development and commercialization.

2017 Kaye innovation Award

In recognition of her work, Suaad Abd-Elhadi was awarded the Kaye Innovation Award for 2017.

The Kaye Innovation Awards at the Hebrew University of Jerusalem have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential, which will benefit the university and society. For more information about the 2017 Kaye Innovations Awards, visit http://bit.ly/kaye2017.

Suaad Abd-Elhadi is a direct-track Ph.D. student at the Department of Biochemistry and Molecular Biology of the institute for Medical Research Israel-Canada in the Hebrew University’s Faculty of Medicine. Under the supervision of Dr. Ronit Sharon, she conducts research that has been published in Scientific Reports and Analytical and Bioanalytical Chemistry. She completed her BSc in medical laboratory science at Hadassah Academic College, and was awarded a scholarship from the Liba and Manek Teich Endowment Fund for Doctoral Students and an Adrian Sucari Scholarship for Academic Excellence.

Photo for download: http://media.huji.ac.il/new/photos/hu170613_abdelhadi.jpg - Doctoral student and Kaye Innovation Award winner Suaad Abd-Elhadi (Credit: Hebrew University)

About the Hebrew University of Jerusalem

The Hebrew University of Jerusalem, Israel’s leading academic and research institution, is ranked among the top 100 universities in the world. Founded in 1918 by visionaries including Albert Einstein, the Hebrew University is a pluralistic institution where science and knowledge are advanced for the benefit of humankind. For more information, please visit http://new.huji.ac.il/en

New research could lead to earlier diagnosis of Parkinson’s disease
AddThis 

First 'haploid' human stem cells could change the face of medical research; earn Kaye Innovation Award

28/06/2017

Potential for regenerative medicine and cancer research earns doctoral student Ido Sagi a Kaye Innovation Award

Stem cell research holds huge potential for medicine and human health. In particular, human embryonic stem cells (ESCs), with their ability to turn into any cell in the human body, are essential to the future prevention and treatment of disease.

One set or two? Diploid versus haploid cells

Most of the cells in our body are diploid, which means they carry two sets of chromosomes — one from each parent. Until now, scientists have only succeeded in creating haploid embryonic stem cells — which contain a single set of chromosomes — in non-human mammals such as mice, rats and monkeys. However, scientists have long sought to isolate and replicate these haploid ESCs in humans, which would allow them to work with one set of human chromosomes as opposed to a mixture from both parents.

This milestone was finally reached when Ido Sagi, working as a PhD student at the Hebrew University of Jerusalem’s Azrieli Center for Stem Cells and Genetic Research, led research that yielded the first successful isolation and maintenance of haploid embryonic stem cells in humans. Unlike in mice, these haploid stem cells were able to differentiate into many other cell types, such as brain, heart and pancreas, while retaining a single set of chromosomes.

With Prof. Nissim Benvenisty, Director of the Azrieli Center, Sagi showed that this new human stem cell type will play an important role in human genetic and medical research. It will aid our understanding of human development – for example, why we reproduce sexually instead of from a single parent. It will make genetic screening easier and more precise, by allowing the examination of single sets of chromosomes. And it is already enabling the study of resistance to chemotherapy drugs, with implications for cancer therapy.

Diagnostic kits for personalized medicine

Based on this research, Yissum, the Technology Transfer arm of the Hebrew University, launched the company New Stem, which is developing a diagnostic kit for predicting resistance to chemotherapy treatments. By amassing a broad library of human pluripotent stem cells with different mutations and genetic makeups, NewStem plans to develop diagnostic kits for personalized medication and future therapeutic and reproductive products.

2017 Kaye innovation Award

In recognition of his work, Ido Sagi was awarded the Kaye Innovation Award for 2017.

The Kaye Innovation Awards at the Hebrew University of Jerusalem have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential, which will benefit the university and society.

Ido Sagi received BSc summa cum laude in Life Sciences from the Hebrew University, and currently pursues a PhD at the laboratory of Prof. Nissim Benvenisty at the university's Department of Genetics in the Alexander Silberman Institute of Life Sciences. He is a fellow of the Adams Fellowship of the Israel Academy of Sciences and Humanities, and has recently received the Rappaport Prize for Excellence in Biomedical Research. Sagi's research focuses on studying genetic and epigenetic phenomena in human pluripotent stem cells, and his work has been published in leading scientific journals, including Nature, Nature Genetics and Cell Stem Cell.

About the Hebrew University of Jerusalem

The Hebrew University of Jerusalem, Israel’s leading academic and research institution, is ranked among the top 100 universities in the world. Founded in 1918 by visionaries including Albert Einstein, the Hebrew University is a pluralistic institution where science and knowledge are advanced for the benefit of humankind. For more information, please visit http://new.huji.ac.il/en.

Photos for download:

First 'haploid' human stem cells could change the face of medical research; earn Kaye Innovation Award
AddThis 

An Israeli innovation feeds the world with more fish protein; earns Kaye Innovation Award

27/06/2017

A new way to grow larger fish and feed the expanding world population earns Prof. Berta Levavi-Sivan a 2017 Kaye innovation Award

As the world faces a projected population increase from today’s 7.5 billion people to 9 billion people by 2050, the demand for sustainable food sources is on the rise. The answer to this looming dilemma may well reside within the booming field of aquaculture. While wild fisheries have been on the decline for the last 20 years, aquaculture, or fish farming, is the fastest growing food-producing sector in the world, and will play an increasingly vital role in our planet’s food resources in the years to come.

One of the challenges to aquaculture is that reproduction, as an energy intensive endeavor, makes fish grow more slowly. To solve this problem, Prof. Berta Levavi-Sivan at the Hebrew University of Jerusalem identified tiny molecules named Neurokinin B (NKB) and Neurokinin F (NKF) that are secreted by the brains of fish and play a crucial role in their reproduction. Prof. Levavi-Sivan, a specialist in aquaculture at the Hebrew University’s Robert H. Smith Faculty of Agriculture, Food and Environment, then developed molecules that neutralize the effect of NKB and NKF.  The molecules inhibited fish reproduction and consequently led to increased growth rates.

Better Fish Growth, More Aquaculture Jobs

These inhibitors can now be included in fish feed to ensure better growth rates.  For example, young tilapia fed the inhibitors in their food supply for two months gained 25% more weight versus fish that did not receive the supplement. So far, NKB has been found in 20 different species of fish, indicating that this discovery could be effective in a wide variety of species.

The technology developed by Prof. Levavi-Sivan and her team was licensed by Yissum, the Technology Transfer company of the Hebrew University, to start-up AquiNovo Ltd., established and operating within the framework of The Trendlines Group. AquiNovo is further developing the technology to generate growth enhancers for farmed fish.

As the aquaculture industry obtains the tools to flourish, an increase in jobs is likely to follow. In Europe, aquaculture accounts for about 20% of fish production and directly employs some 85,000 people. The sector mainly benefits those living in coastal and rural areas, where jobs are most needed.

2017 Kaye innovation Award

In recognition of her work, Prof. Berta Levavi-Sivan was awarded the Kaye Innovation Award for 2017.

The Kaye Innovation Awards at the Hebrew University of Jerusalem have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential, which will benefit the university and society. For more information about the 2017 Kaye Innovations Awards, visit http://bit.ly/kaye2017.

Prof. Berta Levavi-Sivan earned her BSc degree in life science and her MSc and PhD in zoology from Tel Aviv University.  At the Hebrew University’s Robert H. Smith Faculty of Agriculture, Food and Environment, where her work focuses on fish reproduction and growth, she has published over 100 articles in refereed journals and has won several prizes for her findings. As a specialist in aquaculture, she has worked extensively in Uganda to combat depleted fish supplies in Lake Victoria.

About the Hebrew University of Jerusalem

The Hebrew University of Jerusalem, Israel’s leading academic and research institution, is ranked among the top 100 universities in the world. Founded in 1918 by visionaries including Albert Einstein, the Hebrew University is a pluralistic institution where science and knowledge are advanced for the benefit of humankind. For more information, please visit http://new.huji.ac.il/en

Photos for download: http://media.huji.ac.il/new/photos/hu170627_levavisivan.jpg - Kaye Innovation Award winner and Hebrew University aquaculture expert Prof. Berta Levavi-Sivan on the job. (Credit: Hebrew University)

 
An Israeli innovation feeds the world with more fish protein; earns Kaye Innovation Award
AddThis 

A simple test to identify diseases from dying cells could save lives; earns Kaye Innovation Award

26/06/2017

Prof. Yuval Dor and Dr. Ruth Shemer receive Kaye Innovation Award for developing a way to detect specific tissue damage from a blood sample

One of the holy grails of medical research is the development of a simple non-invasive test that can detect a variety of diseases with high accuracy. However to date there is no single diagnostic test that fulfills this function.

To solve this problem, Prof. Yuval Dor and Dr. Ruth Shemer  at the Hebrew University of Jerusalem (together with Prof. Ben Glaser, Head of the Endocrinology Department at the Hadassah Medical Center) developed a new blood test that looks for the remnants of dying cells cast off by specific tissue types throughout the body.

When cells die, they release DNA fragments into the circulatory system. The DNA of each type of dying cell carries a unique chemical modification called methylation. By detecting the unique methylation signatures of DNA from the fragments of dying cells, Prof. Dor and Dr. Shemer have established a way to detect multiple disease processes —including diabetes, cancer, traumatic injury and neurodegeneration — in a highly sensitive and specific manner.

Prof. Dor and Dr. Shemer are researchers at the Institute for Medical Research-Israel Canada (IMRIC) in the Hebrew University's Faculty of Medicine. Both earned their PhDs at the Hebrew University.

Developing a rapid blood test to assess multiple diseases simultaneously

A test that accurately pinpoints tissue damage from dying cells’ DNA fragments could hold the key to a variety of medical advances — from a deeper understanding of human tissue dynamics, to earlier detection of life-threatening illnesses, to more efficient monitoring of responses to medical therapies.

Prof. Dor and Dr. Shemer envision a future where the continued research and refinement of their new technology will lead to a universal, rapid, sensitive and quantitative blood test for tissue-specific cell death. This blood test could be used to assess multiple pathologic conditions simultaneously, equivalent to standard blood chemistry panels in use today.

Their paper describing the method and its applications was published in the Proceedings of the National Academy of Sciences, in 2016, drawing considerable interest from the scientific and popular media.

Aurum Ventures MKI Ltd., the technology investment arm of Morris Kahn, provided Yissum, the Technology Transfer arm of the Hebrew University, with $1.2 million of funding for research and development of this new diagnostic approach. Earlier this year, OnTimeBio was founded to make Prof. Dor’s and Dr. Shemer’s vision become a reality.

2017 Kaye innovation Award

In recognition of their work, Prof. Dor and Dr. Shemer were awarded the Kaye Innovation Award for 2017.

The Kaye Innovation Awards at the Hebrew University of Jerusalem have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential, which will benefit the university and society. For more information about the 2017 Kaye Innovations Awards, visit http://bit.ly/kaye2017.

About the Hebrew University of Jerusalem

The Hebrew University of Jerusalem, Israel’s leading academic and research institution, is ranked among the top 100 universities in the world. Founded in 1918 by visionaries including Albert Einstein, the Hebrew University is a pluralistic institution where science and knowledge are advanced for the benefit of humankind. For more information, please visit http://new.huji.ac.il/en.

Photos for download:

A simple test to identify diseases from dying cells could save lives; earns Kaye Innovation Award
AddThis 

Algorithm leads to dramatic improvement in drug discovery methods; Prof. Amiram Goldblum wins 2017 Kaye Innovation Award

22/06/2017

An algorithm developed at the Hebrew University cuts through the immense number of possible solutions to shorten drug discovery times from years to months

Discovery earns Prof. Amiram Goldblum a 2017 Kaye Innovation Award

Antibiotics for treating particularly resistant diseases, molecules that block immune system overreactions, molecules that inhibit the growth of cancer cells by removing excess iron, molecules that may increase the digestion of fats: all these and more have been discovered in recent years using a unique computerized approach to solving particularly complex problems.

Over the past five years, an Iterative Stochastic Elimination (ISE) algorithm developed in the laboratory of Prof. Amiram Goldblum, at the Hebrew University of Jerusalem’s Institute for Drug Research, has been applied to the discovery of potential drugs. The Institute is part of the School of Pharmacy in the Faculty Of Medicine. First tested to solve problems in the structure and function of proteins, the algorithm has since been used to reduce drug discovery times — from years to months and even to weeks.

Goldblum’s solution is different from other algorithms called "heuristics," which are based on deriving solutions using logic and intuition, and suggests better solutions. In this instance, the algorithm produces a model for the activity of small molecules on one or more proteins known to cause the disease. A model is a set of filters of physico-chemical properties that distinguish between active and non-active molecules, or between more and less active ones. Millions of molecules can then be screened by the model, which enables the scoring of each molecule by a number that reflects its ability to pass through the filters based on its own physico-chemical properties.

A model of this type is usually built in a few hours and is capable of screening millions of molecules in less than a day. Therefore, within a few days or more, it is possible to make initial predictions about the candidate molecules for a specific activity to combat a disease. Most of those candidates have never been known before to have any biological activity.

For the development of this algorithm, Prof. Goldblum won an American Chemical Society Prize in 2000. Since then, the algorithm has solved many problems related to understanding various biological systems such as protein flexibility, proteins-small molecules interactions, and more. These and other discoveries stem from collaborations between Goldblum's laboratory, where his students employ the algorithm to solve various problems, and laboratories and pharmaceutical companies in the world that test Goldblum's predictions in Germany, Japan, the United States and of course in Israel.

On the strength of Goldblum’s technology, the company Pepticom was founded in 2011 by Yissum, the Technology Transfer arm of the Hebrew University, to revolutionize the discovery of novel peptide drug candidates. Pepticom’s key asset is an exceptional artificial intelligence platform aimed at designing peptide ligands based upon solved crystal structures of proteins.

Wide Applications

The algorithm can be applied to other types of problems, in which the number of possibilities is immense and are not solvable even if the world's most powerful computers would work on it together. These include problems in which the number of possible outcomes are 10 to the power of 100 and more, such as problems of land transport, aviation, communications and biological systems.

In the field of transportation, this could involve finding alternative ways to get from one point to another using traffic data on each of the alternative roads leading between the two points. In aviation, an optimal arrangement of landings and takeoffs at busy airports. In telecommunications, finding the least expensive routes within a complex array of communication cables. And in biology, a model that is constructed on the basis of a few dozen or hundreds of molecules serves to screen millions of molecules and to discover new drug candidates. These are then sent to experimental labs to be developed further, and in some cases have been crucial in furthering the development of treatment for Alzheimer’s disease and different forms of cancer.

Kaye Innovation Award

In recognition of his work, Prof. Amiram Goldblum was awarded the Kaye Innovation Award for 2017.

The Kaye Innovation Awards at the Hebrew University of Jerusalem have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential, which will benefit the university and society. For more information about the 2017 Kaye Innovations Awards, visit http://bit.ly/kaye2017.

About the Hebrew University of Jerusalem

The Hebrew University of Jerusalem, Israel’s leading academic and research institution, is ranked among the top 100 universities in the world. Founded in 1918 by visionaries including Albert Einstein, the Hebrew University is a pluralistic institution where science and knowledge are advanced for the benefit of humankind. For more information, please visit http://new.huji.ac.il/en

Photos for download:

Algorithm leads to dramatic improvement in drug discovery methods; Prof. Amiram Goldblum wins 2017 Kaye Innovation Award
AddThis 
Subscribe to RSS - kaye